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Emerging areas of mathematical modelling

By J. R. King

Division of Theoretical Mechanics, School of Mathematical Sciences,
University of Nottingham, Nottingham NG7 2RD, UK

(john.king@nottingham.ac.uk)

Through the use of speci­ c examples, we illustrate growing areas of mathematical
modelling that have arisen more recently than traditionally dominant subjects such
as ®uid mechanics. As high-level mathematics ­ nds application in an expanding range
of disciplines, new methods are needed to investigate the resulting models, and some
of these are also illustrated. A number of recurring themes are identi­ ed, suggesting
likely trends for subsequent developments.

Keywords: industrial mathematics; mathematical medicine;
high-order systems; pattern formation

1. Introduction

The increasing in®uence of mathematical modelling, both within its traditional terri-
tory in the physical sciences and beyond (notably in biology, medicine and ­ nance),
can be attributed not only to the growing need for quantitative understanding but
also to improvements in mathematical capability. The latter have resulted from recent
rapid advances both in computer power, making possible the solution of problems
of greater complexity, and in the sophistication of mathematical methods, partic-
ularly as applied to nonlinear problems. The subject of mathematical modelling is
extremely broad in its scope and variety, and models can be classi­ ed in a number
of di¬erent ways, such as deterministic against stochastic and continuous against
discrete; a distinction particularly worth emphasizing here is that between models
designed to represent the key features of a particular situation and those intended
to study generic nonlinear phenomena. The second of these types has received by
far the greater publicity, to a large degree due to popular interest in topics such as
chaos and fractals; our emphasis here is very much on the former.

Our approach will be to outline (in xx 2{5) four representative topics, each being an
area of growing signi­ cance; we do this primarily through concrete examples intended
to illustrate more general principles. We conclude in x 6 by drawing together some
of the common themes and spelling out some of their implications for likely future
developments.

2. Industrial mathematics: impurity di® usion

A considerable amount of activity in industrial mathematics ultimately has its root
in the Oxford (now European) Study Groups with Industry, which were initiated in
1968 and have subsequently spawned similar meetings in a large number of countries.
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4 J. R. King

Figure 1. Schematic of dissociative mechanism ( , impurity atom; , semiconductor atom).

They are week-long workshops in which academic mathematicians address problems
presented by the industrial participants on the ­ rst day, which often have yet to
be formulated in mathematical terms. The academics present are thus confronted
with issues they would not normally have considered otherwise; the consequences
have included a great deal of novel mathematics (some indication of the scope of
which is provided by Tayler (1986)), greatly enhancing worldwide activity in such
areas as moving-boundary problems (cf. x 5 below), and strong stimuli to avoid the
narrowly focused research, often in well-trodden areas, that characterizes some aca-
demic activity. One of the areas that has been a rich source of new problems, and
from which we draw our example, is that of semiconductor-device fabrication. The
example is intended to be indicative of some of the ways in which a mathematical
model can be formulated.

Impurities are introduced in a controlled way into semiconductor wafers in order
to modify their electrical properties in the fashion required. Di¬used impurity pro-
­ les very often exhibit strongly nonlinear e¬ects, being far from the pro­ les (such
as complementary error functions) that characterize linear di¬usion. A number of
mechanisms can be responsible for such behaviour, the one we consider here being
a substitutional{interstitial di¬usion process known as the dissociative mechanism.
A schematic clarifying the terminology is given in ­ gure 1, where an impurity atom
is shown leaving a substitutional (lattice) site, executing a random walk (i.e. di¬us-
ing) between interstitial sites, and then returning to the substitutional state upon
encountering a vacancy (an unoccupied lattice site). Reference to much of the ear-
lier literature is given in Tuck (1988); here we concentrate on some two-dimensional
e¬ects identi­ ed in Meere et al . (1995).

Model formulation can proceed from the consideration of atomic jumps of the
type illustrated in ­ gure 1; this leads to discrete formulations (details of which are
given in King et al . (1995) for a di¬erent di¬usion process, namely the interstitialcy
mechanism) that have some novel features. However, di¬usion lengths are usually, in
practice, much larger than the atomic spacing, and the appropriate model can then
be obtained either directly by continuum considerations, for which the details of the
crystal lattice may be unimportant, or by taking the continuum limit of the discrete
formulation. In any case, for the simplest version of the dissociative mechanism, the
governing equations can be deduced as follows. Denoting by s, i and V, respectively,
a substitutional impurity atom, an interstitial impurity atom and a vacancy (the
concentrations of which are denoted by c s , ci and cV), the dissociative process can
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Figure 2. Contours of total impurity concentration for di® usion under a mask edge; the semi-
conductor surface x = 0 is covered by an impervious mask in y < 0 and by a source of impurity
in y > 0.

be treated as a reversible chemical reaction, namely

s i + V: (2.1)

This reaction progresses in the forward direction (illustrated by the left-hand arrow in
­ gure 1) at a rate k1c s , this being proportional to the number of substitutional atoms
available to become interstitial; it operates in the reverse direction (see the right-hand
arrow in ­ gure 1) at a rate, k2cicV , determined by the probability that an interstitial
encounters a vacancy. The probability that a vacancy occupies a given lattice site
is, thus, treated as being independent of whether or not there is a neighbouring
interstitial. Vacancies and interstitials are taken to be able to execute random walks
over lattice and interstitial sites, respectively, with di¬usivities DV and Di, and the
substitutionals are taken to be unable to di¬use. Accounting for these di¬usive e¬ects
and for the reaction (2.1) leads to the reaction{di¬usion system:

@c s

@t
= k2cicV k1c s ;

@ci

@t
= Dir2ci k2cicV + k1c s ;

@cV

@t
= DVr2cV k2cicV + k1c s :

9
>>>>>=

>>>>>;

(2.2)

In practice, the reaction typically proceeds much more rapidly than di¬usive pro-
cesses and (2.2) simpli­ es for large k1 and k2 to the di¬usion problem:

k1c s = k2cicV ;
@

@t
(cs + ci) = Dir2ci;

@

@t
(c s + cV) = DVr2cV: (2.3)

One-dimensional solutions for impurity in-di¬usion from a source at the surface
typically exhibit strongly nonlinear behaviour, with the impurity pro­ le showing a
region of rapid variation near the surface and with a pronounced depletion of vacan-
cies. The latter results from impurity atoms occupying vacancies as they di¬use
into the semiconductor and is responsible for the former. Two-dimensional solutions
exhibit additional features of interest. Figure 2 illustrates impurity di¬usion under
a mask (the model used is in fact slightly more sophisticated than (2.2) in that it
accounts for the charges carried by the di¬using species and the electric ­ elds that
these charges induce; the qualitative behaviour of the models is similar, however).
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6 J. R. King

Figure 2b shows the behaviour when cs is small, so that cV is almost constant and the
­ rst two equations of (2.3) reduce to the linear di¬usion equation. For the simulation
in ­ gure 2a, however, vacancy concentrations are strongly depleted; this ­ gure illus-
trates the greatly enhanced di¬usion that can occur beneath the mask. The e¬ect
results from the surface acting as a source for vacancies, whose concentration is,
therefore, little depleted immediately beneath the mask. This enables an intersti-
tial impurity to become substitutional there very readily, providing a rapid di¬usion
pathway. This phenomenon of enhanced lateral di¬usion is well known experimen-
tally and is highly undesirable in practice; as suggested by ­ gure 2b, it does not occur
for simpler di¬usion processes. Its successful prediction by (2.2) illustrates the e¯ -
cacy of models that aim to provide concise mathematical descriptions of the speci­ c
physical processes involved.

3. Mathematical biology: multicell tumour spheroid growth

Applications to biology and medicine are among the areas of fastest growth in the
scope of mathematical modelling studies. One of the approaches that has found most
widespread application involves the use of reaction{di¬usion systems of a type not
unlike the example outlined in the previous section. Indeed, many workers in the ­ eld
concentrate almost exclusively on models of reaction{di¬usion type, partly motivated
no doubt by the success of such systems in generating a wide variety of interesting
patterns of the sort observed in animal coat patterns and elsewhere; the ­ eld has been
very strongly in®uenced by the seminal early studies of Turing (1952). While it seems
clear that reaction{di¬usion phenomena are crucial in many biological and medical
processes, it is very often the case that other e¬ects (notably those involving material
deformation) are equally important. In many biomedical applications there is, thus, a
very great need for the more e¬ective combination of concepts from reaction{di¬usion
theory with those from continuum mechanics; the model outlined below provides a
simple example of such an amalgam. Continuum mechanics, which describes the
deformation of solids and the ®ow of liquids, together with the stresses that cause or
result from them, is an extremely well-developed subject. Nevertheless, its applica-
tion to mathematical biology brings a number of relatively novel challenges, notably
those that result from tissue growth and deformation occurring simultaneously.

Multicell spheroids grown in vitro are widely studied experimentally, partly in view
of their possible relevance to the early (avascular) stages of tumour growth in vivo
(before the tumour has acquired its own blood supply). A schematic of the phases of
multicell spheroid growth is shown in ­ gure 3. When a spheroid is su¯ ciently small,
ample externally supplied nutrient is able to penetrate right through to its centre; all
the cells are thus able to proliferate, resulting in exponential growth. As the tumour
grows, nutrient consumption by the cells near to the surface results in those at the
centre receiving an insu¯ cient supply, causing them to become quiescent (alive but
dormant) and then necrotic (dead and decomposed).

Important early modelling work includes that of Greenspan (1972). The model
we describe here is given in Ward & King (1997) and treats the whole tumour on
the same footing, the spatial structure indicated in ­ gure 3 being predicted from
the model rather than being enforced when it is formulated. As well as reproducing
the observed spatial heterogeneity, the model also successfully predicts the ­ rst two
phases of tumour growth (exponential and linear). The dependent variables involved
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Figure 3. Schematic of multicell spheroid growth and heterogeneity.
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Figure 4. Evolution of live cell density in time (dashed lines) towards the steady-state (satura-
tion) pro¯le (solid line). The steady-state mitotic distribution is also shown (dotted line); the
region in which this is very small, but the live cell density is not, is one of cell quiescence (cf.
the schematic in ¯gure 3).

are n(x; t) and m(x; t), the concentrations of live and dead cells, v(x; t), the local
velocity within the tumour (driven by volume creation through cell birth and loss
by cell death), and c(x; t), the nutrient concentration. We have

@n

@t
+ r (vn) = (km (c) kd (c))n;

@m

@t
+ r (vm) = kd (c)m; (3.1)

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/
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where km is the rate of mitosis (cell division) and kd is the rate of cell death. The
­ rst equation of (3.1) states that @n=@t, the rate of change of the live cell density,
is determined by the net birth rate of cells, (km k d )c, and by their transport due
to the local velocity ­ eld, r (vn). Taking the materials to be incompressible and
free of voids, we have VL n + V D m = 1 within the tumour, where VL and VD are,
respectively, live and dead cell volumes. It then follows from (3.1) that

r v = km (c)nVL k d (c)n(VL V D );

which makes explicit how cell birth and death drive the velocity ­ eld. Finally, the
nutrient concentration satis­ es the reaction{convection{di¬usion equation

@c

@t
+ r (vc) = Dr2c km (c)n; (3.2)

the terms on the right-hand side of which represent nutrient di¬usion (di¬usivity D)
and consumption (parameter ). Taking the tumour to be spherically symmetric,
equations (3.1){(3.2) (together with m = (1 V L n)=V D and appropriate boundary
and initial conditions) form a complete model, numerical and asymptotic solutions of
which are given in Ward & King (1997). Since the model is unable to predict the ­ nal
phase of growth saturation, rather than reproducing such results here, we instead
give, in ­ gure 4, a numerical simulation of the model of Ward & King (1999), which
generalizes and re­ nes the earlier model by incorporating the consumption and egress
of necrotic material. Two large-time outcomes (the states to which the solution is
attracted, no matter whence it starts) are then possible, namely growth saturation
(illustrated in ­ gure 4) and continued linear growth (represented mathematically by
a travelling wave). The bifurcation analysis in Ward & King (1999) identi­ es the
transition between these outcomes in terms of the values of the model parameters.
In vitro, the growth saturation regime is always observed; that of linear growth may,
however, be of relevance to behaviour in vivo.

A spherically symmetric tumour may become unstable (see, for example, Byrne
& Chaplain 1997), developing `hot spots’ on the surface at which growth is more
rapid, leading to ­ ngering of the type described in a di¬erent context in x 5 below.
Such instabilities may have important consequences for the invasiveness of a tumour
in vivo. If the tumour lacks radial symmetry, an extra ingredient is needed in the
modelling, namely a constitutive law relating deformations and stresses, and a num-
ber of such laws have been investigated. Enhanced pressures within a tumour have
undesirable implications for the delivery of chemotherapeutic drugs, providing an
illustration of the importance of the interplay between continuum mechanics and
reaction{di¬usion e¬ect to which we have already alluded.

The adequate modelling of (vascular) tumour growth in vivo requires the incor-
poration of numerous extra aspects, of which we note the tumour’s acquisition of its
own blood supply through the process of angiogenesis (which has been widely mod-
elled; see Anderson & Chaplain (1998) and references therein) and the interaction of
a tumour with the surrounding (normal) tissue (which has received little modelling
attention; see Perumpanani et al . (1997), however). In common with many other
topics in mathematical biology, a vast range of important open problems remains in
this area, providing continued impetus for the growth of the ­ eld.
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Figure 5. Schematic of spreading ° uid droplet.

4. High-order di® usion

Our intention in this section is to highlight an area of growing mathematical interest
with important physical applications, and to illustrate some of its di¯ culties.

Evolution equations of the form

@h

@t
=

@

@x
hn @p

@x
(4.1)

(where n is a positive constant) arise in describing the slow spreading of a thin ®uid
­ lm over a horizontal surface y = 0 (see the schematic in ­ gure 5), with y = h(x; t)
denoting the height of the droplet and p(x; t) the pressure with the ®uid. For n = 3,
(3.1) is Reynolds’s equation from lubrication theory, to which the exponent n = 2
is also relevant in circumstances in which the ®uid is able to `slip’ over the solid.
Equation (3.1) with n = 1 is the corresponding model for ®ow in a porous medium
or a Hele{Shaw cell. To close the problem, the force driving the spreading of the
droplet needs to be prescribed and the cases of interest here are when, suitably
normalized, p = h (gravity driven), p = @2h=@x2 (surface tension driven), and
p = @4h=@x4 (when an elastic plate covers the droplet surface), giving, respectively,

@h

@t
=

@

@x
hn @h

@x
; (4.2 a)

@h

@t
=

@

@x
hn @

3h

@x3
; (4.2 b)

@h

@t
=

@

@x
hn @

5h

@x5
; (4.2 c)

the ­ rst three members of a hierarchy of di¬usion equations. The vanishing of the
`di¬usivity’, hn, at h = 0 results in an important ­ nite speed of propagation property
for (4.2), whereby an interface separating a dry region (in which h = 0) from a wet
one (h > 0) moves at a ­ nite rate, rather than complete wetting occurring imme-
diately. Equation (4.2 a) arises in numerous other contexts; it and its close relatives
have been the subjects of a vast amount of study over the last 50 years (reviews
include Kalashnikov (1987)) and they are now very well understood. These develop-
ments have formed an important branch of applied analysis, (4.2 a) having provided
a proving ground for the development of a number of powerful methods. The focus of
much attention is now turning to (4.2 b), and to other high-order systems, with for-
mulations of this type occurring across a wide range of disciplines (see, for example,
Bernis 1995). Our goal in what follows is to indicate some of the mathematical di¯ -
culties (often re®ecting physical phenomena) associated with (4.2 b) that go beyond
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those of (4.2 a); a considerable number of open questions remain, with (4.2 b) prov-
ing a very useful test-bed for the development of methods for analysing high-order
problems.

Much of the analysis of (4.2 a) is based on comparison theorems, whereby particular
solutions can be used to give information about much more general ones. A simple
illustration is that, because h = 0 satis­ es (4.2 a), it follows that if a solution is
initially positive it remains so. By contrast, no comparison theorem exists for (4.2 b),
which creates a great deal of extra mathematical di¯ culty and means, in particular,
that the ­ lm thickness h may be able to drop to zero, implying ­ lm rupture and the
possible development of dry spots.

A second major di¯ culty in the analysis of (4.2 b) concerns the lack of uniqueness
of the solution; this leads to the issue of how a physically relevant solution is to be
prescribed. We can highlight this di¯ culty, and also give information about whether
or not a droplet is predicted to spread, by considering travelling-wave solutions h =
h( ), = x qt, where q is a constant. Taking h = 0 for 0 and prescribing
conservation of ®uid at = 0, we have, for (4.2 a), that

q = hn 1 dh

d
; giving h = (nq( ) + )1=n; (4.3)

where ( ) + = max(0; ), the qualitative behaviour of which is insensitive to the
value of n. For (4.2 b) we instead have (cf. Boatto et al . 1993)

q = hn 1 d3h

d 3
; (4.4)

one solution of which is

h =
n3q

3(3 n)(2n 3)
( )3

+

1=n

; n 6= 3
2
; 3: (4.5)

It would not be appropriate to go into all the consequences of such expressions here,
but we note the following points.

(i) The solution (4.5) is only of the same type as (4.3), in the sense that q > 0 is
required (implying that the droplet spreads outwards), when 3

2
< n < 3. Unlike

(4.2 a), equation (4.2 b) exhibits a number of critical values of the exponent n
at which the qualitative behaviour of solutions changes signi­ cantly. One of
the most important of these is n = 3, since it turns out that for n 3 no
solutions exist in which the droplet expands. This result relates to well-known
di¯ culties associated with how a point at which the free surface y = h meets
the solid (known as a contact line) moves; the appropriate formulation of the
physical behaviour near to such a point remains a topic of debate.

(ii) For n < 3
2
, (4.4) has solutions with h B( )2 as ! 0 for constant B.

Like (4.5), this expression has zero contact angle for n < 3 (i.e. dh=d = 0
at = 0), but the non-uniqueness property can be illustrated by noting the
existence of other solutions with ­ nite contact angle, for which

h A( ) +B( )2 q

(4 n)(3 n)(2 n)An 1
( )4 n; as ! 0 ;

(4.6)
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for arbitrary constants A and B, a minor modi­ cation of (4.6) being needed if
n = 2. The local behaviour indicated by (4.6) generalizes from travelling waves
to other solutions (with A, B and q becoming time dependent) and leads to an
in­ nite family of possible solutions; this is in sharp contrast to the second-order
case (4.2 a) for which the local behaviour (4.3) speci­ es the solution uniquely.
Uniqueness for (4.2 b) can, however, be recovered if, for example, the contact
angle @h=@x or the pressure @2h=@x2 is speci­ ed at the contact line; this is
again a re®ection of singular behaviour of such a point from the physical point
of view.

It is hoped that the above remarks illustrate some of the di¯ culties associated with
high-order systems, even those as apparently straightforward as (4.2 b), together with
the scope for further developments. Equation (4.2 c), which is relevant in semicon-
ductor fabrication and to surface crusting on spreading melts, for example, leads to
an additional set of extra complications. The area is likely to remain one of intense
study for many years to come.

We conclude this section by noting an example of a related fourth-order system,
namely the Cahn{Hilliard equation used in the study of phase separation in alloys
and of interest partly for its pattern-forming properties. For a degenerate mobility
version of this equation, of the form

@u

@t
= r ((1 u2)r( r2u+  (u)))

(u being the di¬erence in the mass fraction of the two components of the alloy), it
has recently been shown by Cahn et al . (1996) that, in a limit case, the velocity
at which the contour u = 0 propagates in the normal direction is proportional to
the Laplacian of its curvature. We shall use a related interfacial dynamics law as an
illustration in the next section (see equation (5.8)).

5. Moving-boundary problems

(a) Interfacial dynamics

In many physical applications, the appropriate form of the mathematical model
contains an interface whose evolution must be determined in the course of solving
the problem. The coupling between the location of this moving boundary and the
other unknowns leads to nonlinearities that cause signi­ cant complications. Moving-
boundary problems originally arose in the modelling of melting and freezing, in which
the interface separates the solid and ®uid phases; they are now very widespread,
occurring in, for example, corrosion, oil extraction, option pricing and, as already
implied, tumour growth and free surface ®ows (see, for example, Elliott & Ockendon
1982). The simplest class of such problems, an example of which we shall use to
illustrate a variety of relevant phenomena, is that in which the moving-boundary
location is the only unknown, being governed by an evolution equation that involves
quantities evaluated only on the moving boundary itself. Such models are widely used
to mimic crystal growth, for example; moreover, they can be derived systematically
as limit cases of reaction{di¬usion problems and (as already indicated) of models of
phase separation.
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Figure 6. Finger development in an ill-posed moving-boundary problem. (a) Steadily propagating
¯ngers, (5.5); (b) the growth of ¯ngers from an almost planar interface, (5.6); and (c) the growth
of b̀ubbles’ , (5.7).

One of the simplest models of the class in question takes the form

v n = ; (5.1)

where v n is the normal velocity and the mean curvature of the moving bound-
ary; we consider curves in two dimensions, each point of which thus moves in the
perpendicular direction with speed given by the local value of the curvature.

Equation (5.1) is well-posed, tending, in particular, to smooth out protuberances
on a curve. However, in many applications, ill-posed models are of more interest,
leading to phenomena such as ­ ngering and dendrite growth. The time reversal of
(5.1), namely v n = , is such an ill-posed model. Writing the curve in the form
y = f(x; t) yields

@f

@t
=

1

(1 + (@f=@x)2)

@2f

@x2
; (5.2)

which is one of the nonlinear di¬usion equations identi­ ed by Akhatov et al . (1987)
and Bluman et al . (1988) as special cases from the symmetry point of view; such
symmetry approaches are now widely used in the analysis of nonlinear di¬erential
equations, much progress having recently been made in the area. The results of the
symmetry analysis suggest re-expressing (5.2) in terms of the variables

z = x+ if; g(z; t) = x if; (5.3)

which enables (5.2) to be written in its simplest form, namely

@g

@t
=

1

(@g=@z)

@2g

@z2
: (5.4)

That this formulation arises from symmetry considerations is a noteworthy result
because (5.3) expresses the moving boundary in the form ·z = g(z; t) (where z = x+iy,
·z = x iy are complex conjugates); such an approach is known for other reasons to be
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of value in many moving-boundary problems, g being termed the Schwarz function
(see Howison 1992). New solutions to (5.4) were constructed in King (1993); from
these, we have|in addition to the well-known travelling wave solution shown in
­ gure 6a and given by

cos(qf) = 1
2
eq(x qt); g qt = ln(1 e q(z qt))=q; (5.5)

where q is a constant|two generalizations, namely

cos(qf) = e q2t sinh(qx); tanh( 1
2
qg) =

1 ie q2t

1 + ie q2t
tanh( 1

2
qz); (5.6)

shown in ­ gure 6b, which illustrates how an originally nearly planar interface leads
to ­ ngering, with the ­ ngers eventually being of the form (5.5), and

cos(qf) = e q2t cosh(qx); tanh( 1
2
qg) tanh( 1

2
qz) = tanh( 1

2
q2t); (5.7)

corresponding to the `bubbles’ illustrated in ­ gure 6c and again evolving for large
time to (5.5) and its mirror image. Analogous solutions to the more complicated
Hele{Shaw moving-boundary problem have been widely studied.

Because (5.2) is ill-posed, for most initial conditions a solution will cease to exist in
­ nite time. The usual way to remedy this is to regularize the problem by introducing
an additional stabilizing term (surface tension provides a commonly adopted physical
regularization); a typical such generalization is (see, for example, Brower et al . 1984)

v n = "2 @
2

@s2
; (5.8)

where " is a small constant and s is the arc length along the curve. This again takes a
particularly convenient form when written in terms of the Schwarz function, namely

@g

@t
=

1

(@g=@z)

@2g

@z2
+ 2"2 @

@z

1

(@g=@z)1=2

@2

@z2

1

(@g=@z)1=2
:

It is natural to speculate whether the ­ nger solution (5.5) to the unregularized
problem plays any role in the large-time behaviour of (5.8); we expand on this
below, similar issues arising in many pattern-forming moving-boundary problems.
We note that the Schwarz function, g(z; t), has singularities in the complex plane at
z = qt + 2n i=q for (5.5), z = qt+ 2n i=q and z = qt + (2n + 1) i=q for (5.6), and
at z = qt + 2n i=q for (5.7), where n is an arbitrary integer. Such apparently non-
physical singularities (in the sense that they are not present in the physical domain,
which, in the current case, is simply the curve y = f(x; t)) are widely believed to
play an important role in determining the physical behaviour. The simple explicit
solutions above give some indication of how such singularities can evolve. In par-
ticular, for (5.6) we have a singularity at (x; y) = (qt; 0), while on the curve y = f
we have y = 0 at x = sinh 1(eq2t)=q; the latter satis­ es x eq2t=q as t ! 1 and
x qt+ ln 2 as t ! +1. The singularities of the Schwarz function thus move closer
to the curve as t increases (this being a common feature of ill-posed problems),
approaching a spacing of ln 2 as t ! +1. For initial data for which the solution to
(5.4) ceases to exist in ­ nite time, one or more singularities will impinge on the curve
at that ­ nite time; such behaviour is generic for (5.4) because of its ill-posedness and
it would be of interest to know the full class of solutions for which it does not occur,
this class obviously including (5.5){(5.7).
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(b) Asymptotics beyond all orders

Asymptotic problems are those involving a small parameter (" in the case of (5.8),
with 0 < " 1) that can be exploited to simplify their analysis. The ­ nal issue we
wish to illustrate involves an area of asymptotics in which there has recently been
dramatic progress, with important further developments likely in the near future. The
methods in question emphasize the crucial role played by complex-plane singularities
in dictating the real behaviour.

We have already alluded to the possible role of (5.5) in governing the large-time
behaviour of (5.8) for small ". An issue that arises immediately is the selection
of the wavespeed q, which is arbitrary in (5.5). As with the Hele{Shaw problem, a
natural proposal is that it is the regularization that provides the physical mechanism
responsible for selecting the speed, even though the regularizing term is small. In a
similar manner to Kruskal & Segur (1991), we formulate the travelling wave problem
for (5.5) in terms of (s), the angle the moving boundary makes with the vertical. For
­ ngers propagating steadily in the x-direction at speed q, we then have v n = q cos ,

= d =ds, so that (5.1) becomes

"2 d3

ds3
+

d

ds
= q cos ;

suitably rescaling s and rede­ ning " (now with 0 " 1), this is equivalent to

"2 d3

ds3
+ (1 "2)

d

ds
= cos ; (5.9)

which will be the most convenient form for us to work with. We should like to solve
(5.9) subject to

! 1
2
; as s ! 1; (5.10)

to give ­ ngers of the type shown in ­ gure 6a for " = 0. In fact, no such solutions
exist for " > 0, and our goal is to illustrate some of the subtleties involved in the
behaviour for " small but non-zero.

Imposing the boundary condition as s ! +1, we ­ nd that

1
2

Ae s; as s ! +1; (5.11)

the arbitrary constant A being the only degree of freedom in this limit. This implies
that (5.10) represents four boundary conditions in all, making the problem overspec-
i­ ed (a di¯ culty that is compounded by the translation invariance of (5.9){(5.10),
which enables us to specify the value of A to give an initial-value problem); this sug-
gests why there is no solution that satis­ es (5.11) for " > 0. The periodicity property
(s+ i) = (s) follows from (5.9) and (5.11).
For small ", it is natural to expand the solution to (5.9) in the form

1X

n = 0

"2n
n(s); (5.12)

giving, in particular,

d 0

ds
= cos 0;

d 1

ds
= 1 sin 0 +

d 0

ds

d3
0

ds3
;
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and, hence, 0 = sin 1(tanh s), 1 = 2 sech s tanh s; since

n =
nX

k = 1

an;k sech2k 1 s tanh s; n 1; (5.13)

for constant an;k, it is straightforward to calculate n up to any order; it is easily
seen that a solution that satis­ es (5.10) exists up to any power of ", so the expansion
(5.12) apparently fails to reproduce the expected non-existence result. However, two
features of the asymptotic solution indicate that such appearances may be mislead-
ing. The ­ rst is that the series (5.12) is divergent; care must therefore be exercised
in giving it meaning with the tail of the expansion (the behaviour of n for large
n) containing the information we require (see Chapman et al . 1998). Secondly, it is
clear from (5.13) that n possesses complex-plane singularities at s = 1

2
(2n + 1) i

(re®ecting those of the Schwarz function mentioned above) and that these singulari-
ties become more severe as n increases; this indicates the need for a separate analysis
in the complex plane close to these singularities (see Kruskal & Segur 1991). Stokes
lines are lines in the complex plane across which an exponentially small quantity
is switched on, this quantity being of size e =2"="1=2 here (`beyond all orders’ of
the algebraic expansion (5.12)). They are initiated at the complex plane singularities
and, in the current example, run along the imaginary axis. Such Stokes lines, hidden
beyond all orders of the asymptotic expansion, can conveniently be made manifest
by optimal truncation (Chapman et al . 1998). The exponentially small quantity that
is turned on is of the form

e =2" cosh1=2 s cos(s=")="1=2; (5.14)

where 8:48, this being an asymptotic solution of the homogeneous remainder
equation

"2 d3

ds3
+ (1 "2)

d

ds
= sin 0:

The solution that satis­ es (5.11) contains the exponentially small term to the
left of the Stokes line (i.e. in Im s < 0) but not to the right. A crucial point is that
the Stokes line crosses the real axis and, thus, in®uences the solution on the real
line, the term (5.14) causing the boundary condition as s ! 1 to be violated, thus
implying the non-existence of a travelling wave.

Since no steadily propagating ­ ngers exist, the question of how (5.8) ultimately
evolves remains unanswered; the application of the methods of asymptotics beyond
all orders to such time-dependent problems remains in its infancy. One possibility is
that ­ ngers do develop but that they throw o¬ sidebranches of the type observed in
dendritic (snow®ake-like) growth; these may, in turn, produce their own sidebranches,
leading to the possibility of very complicated (ultimately fractal) morphologies. Such
issues indicate the scope for further developments in the area.

6. Discussion

The examples given above have enabled us to illustrate some fast-developing ­ elds
in mathematical modelling and to touch upon a variety of powerful techniques that
are the subject of current advances, such as symmetry methods, asymptotics beyond
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all orders, rigorous analysis, and complex-variable methods. They also suggest areas
that will be the subject of intensive study in the future.

One such area was hinted at by the example of x 2, namely the link between
microscopic (cellular, molecular, etc.) and macroscopic behaviour. Understanding
the interactions between widely di¬erent scales remains a great challenge, which
will grow in signi­ cance as, among other issues, semiconductor devices shrink and
comprehensive understanding of biological systems is sought. Further relevant exam-
ples are provided by the key role played by vortices in determining the large-scale
behaviour of ®uids and superconductors and of dislocations in determining that of
crystals. One way of viewing vortices and dislocations is as line singularities in par-
tial di¬erential equations (cf. Chapman et al . 1997), illustrating another recurring
theme; local singularities also play a central role in the study of contact line behaviour
(cf. x 4), while complex plane singularities control the evolution of many nonlinear
systems (cf. x 5).

The coupling between material deformation and reaction{di¬usion e¬ects is an-
other topic that deserves much greater study, given its signi­ cance not only in biology
but also in many other disciplines, examples being provided by the complicated
interactions between stress and di¬usion that can arise in materials modelling. One
of the di¯ culties in mathematical biology is the huge range of coupled e¬ects that
may be present, so a skill required for successful modelling is the ability to formulate
tractable models that make possible the investigation of which e¬ects are of most
signi­ cance. The scope for developments in mathematical biology and medicine is
particularly large, the hope and expectation being that ideas of signi­ cant clinical
value will result.

Despite the growing power of computers, analytical methods will continue to play
a central role in mathematical modelling. Simple explicit solutions such as those
in x 4 provide very valuable insight, singularity development cannot be investigated
solely by numerical means and asymptotic methods can cope very successfully with
problems that are extremely demanding (or indeed intractable) numerically. Com-
puter algebra provides an e¬ective tool for making analytical approaches viable in
a wider range of problems. Rigorous analysis is also likely to become more cen-
tral to modelling studies as its power grows and as the increasing complexity (or
smaller scale) of the phenomena being studied makes physical intuition less reli-
able. One role of a particular tool of analysis, namely regularization, has been out-
lined in x 5. It is of much more widespread value, however: it can, for example,
be used to address the issues of non-uniqueness mentioned in x 4. High-order sys-
tems will remain a focus of analysis for a considerable period; some of the reasons
were noted in x 4, and the signi­ cance of such systems is also implicit in x 2, the
`bird’s beak’ pro­ les of ­ gure 2a arising naturally for certain reaction{di¬usion sys-
tems but not from single equations, for which the pro­ les of ­ gure 2b are more
representative.

Mathematical modelling is a vast (and fast-growing) ­ eld; the above selection
of topics re®ects the author’s own interests and is far from comprehensive (as, of
necessity, is the list of references). There are numerous other areas in which math-
ematical modelling is growing in importance; to illustrate the extent of these, we
mention applications involving materials modelling (smart materials, etc.), food and
agricultural sciences (in quantifying issues of food safety, for example), chemistry,
quantum devices and optics. The scope of such applications requires a wide variety
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of models; to o¬set the emphasis on di¬usive systems in xx 2{5, the very widespread
importance of other classes of partial di¬erential equations (namely, hyperbolic and
elliptic) should be mentioned, as should that class of models involving quite dif-
ferent mathematical formulations (integral equations, discrete systems, stochastic
models and so on). Each such description presents its own mathematical challenges,
as recent progress in the understanding of nonlinear and hyperasymptotic phenom-
ena, in particular, con­ rms. `Black box’ numerical packages, such as computational
®uid dynamics codes, are now widely used, particularly in industrial and engineering
contexts. While they clearly have an important role to play, uncritical reliance upon
them accordingly has its dangers.

Successful mathematical modelling is very much a multidisciplinary endeavour.
While we have chosen to concentrate here on the mathematical demands that it
makes, the importance to its health and vitality of genuine collaborations with sci-
entists and engineers across a broad spectrum of disciplines cannot be overstated.
Providing mathematicians rise to this challenge, the subject has an exceptionally
bright future.

I am very grateful to Mark Bowen, Martin Meere and John Ward for providing the ¯gures, and
to the Leverhulme Trust for ¯nancial support.
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